
		Skip to content
		
		
			codingsoul
		

		

	Intuition and discipline, coding for my soul

	
		
		Home > PowerPoint > Embedding pdf into PowerPoint by usage of OpenXml
			
			
					
		Published June 11, 2015 by holgerleichsenring	

		
			Embedding pdf into PowerPoint by usage of OpenXml

		

		
			
								So what’s the fun part of mainly working into Azure when you not have to go back to really oldschool coding with OLE?

Doing it oldschool. Sometimes a pleasure 😉
Having worked with these old-fashioned OLE libraries means (again) being able to really worship working into brand-new Azure environment where pretty much everything is moreless clear.

I currently write software for Books. This is automation software for office products, namely is able to take over your Excel workbooks, pdf documents and word documents and create pdf or PowerPoint presentations out of it. It is finally possible to insert images from that documents, link the documents or even embed the documents in slides.

Creating of PowerPoint presentations is problematic with PowerPoint Interop as it is not scalable and slow. Books is a multithreaded application. PowerPoint is a OLE Server, meaning is able to tunnel requests but when using too heavily, it will just reject calls. Certainly that slows down whole processing. The caller then has to retry calls until PowerPoint again is able to react.

So I decided to implement the creation in OpenXml. This has some big advantages

	completely file based
	multithreading by design
	lightning fast

But certainly it has some disadvantages

	pretty complex
	not transparent at all. Yes, every single xml fragment is documented here. Finding out the cross references between the necessary parts is even for date type cell values an adventure. The 4rd edition of the specification contains over 5000 pages.
	For comparison or for better understanding what the output of OpenXml is, there is a SDK available. As this auto generates code … let’s say … it is better than nothing.
	OpenXml does not render at all. That means the hard part is up to you.

What’s exactly the hard part?

When trying to embed a document in a PowerPoint slide, PowerPoint will open the application in question, ask for a “screenshot” and the document to be embedded. When working with OpenXml, this has to be accomplished by us. At this current stage for the product I program for, embedding Excel and Word is not a problem at all, as anyway these applications are opened with the according documents, “screenshot” and documents have been taken and are ready for being embedded.

Pdf is a little different. There is no interop available, surely we could use pdfium to create the picture to avoid messing around with adobe directly. But there is one single thing that makes it really problematic: All other types of documents can just be embedded “like they are”. There is little to no difference between the actual original document and what will be placed inside of a slide. The original pdf document and the document to be embedded have huge differences. Have a look at the winmerge diff:

Pretty different pdf files
So actually there is no way around using the OLE server to create picture and document.

There are various blog posts about this topic, best summary you can find here. Additional I asked a question on StackOverflow. Typically this kind of question doesn’t lead to too much traffic, these kind of problems don’t come up too often for most programmers.

Actually all the findings did a good job to give me an idea what is about to be accomplished, but the ugly truth is: This doesn’t work with current versions of PDF. Referring to the post above, I experienced exactly the same issue like these guys: On a 64 bit OS, this seems to work only with Abobe version 9.Higher version fails with error code 0x8000FFFF which translates to Catastrophic failure.

After doing a lot more search, I did find something interesting, again on StackOverflow. It actually uses the same procedure, but has exactly one difference.

[code]

OLE32.IStorage storage;

int result = OLE32.StgCreateStorageEx(oleOutputFileName,

Convert.ToInt32(OLE32.STGM.STGM_READWRITE | OLE32.STGM.STGM_SHARE_EXCLUSIVE | OLE32.STGM.STGM_CREATE | OLE32.STGM.STGM_TRANSACTED),

Convert.ToInt32(OLE32.STGFMT.STGFMT_DOCFILE),

0,

IntPtr.Zero,

IntPtr.Zero,

ref OLE32.IID_IStorage,

out storage

);

[/code]

The actual different is OLE32.STGMT.STGMT_DOCFILE. The other examples use STGFMT_STORAGE. That actually did the trick and let the code work even with newer versions of Adobe.

Another hint: All the samples beside the last link do not handle closing the handles/ files correctly. Last link gives a good hint:

[code]

var storagePointer = Marshal.GetIUnknownForObject(storage);

int refCount;

do

{

refCount = Marshal.Release(storagePointer);

} while (refCount > 0);

[/code]

This has to be accomplished actually for all com objects in question.

							
		

		
			
	
		Previous Post
		Programming and Intuition, Part II
	

	
		Next Post
		The natural borders of Azure cloud queue scalability
	

			
		
		
			holgerleichsenring		

	

	
			

			Office OpenXml Pdf PowerPoint

			Embedding Office OpenXml Pdf PowerPoint

		

	

		

	
		Primary Sidebar

		
			About Me

 Holger Leichsenring, Freelancer.
Cloud, lift & shift, architecture, development, coaching

Archives

				April 2022
	March 2022
	June 2021
	May 2020
	October 2018
	September 2018
	July 2018
	June 2018
	April 2018
	March 2018
	January 2018
	November 2017
	August 2017
	January 2017
	December 2016
	October 2016
	September 2016
	July 2016
	June 2016
	May 2016
	April 2016
	March 2016
	February 2016
	January 2016
	June 2015
	January 2015
	November 2014

			Categories

				.net

	Allgemein

	Architecture

	Assembler

	Assembly structure

	autofac

	Azure

	Azure DevOps

	Azure Functions

	Azure Service Fabric

	Boxcryptor

	Cloud

	Cloud Queue

	Cloudfogger

	Code Quality

	commodore64

	Containers

	d3js

	DataBinding

	Defensive programming

	Dependency Injection

	Docker

	Don't make me think

	dotnet

	EF Core

	Excel

	Excel REST API

	Folder structure

	Git

	Google Drive

	Hyper-V

	Infrastructure

	Inuition

	Logging

	maintainability

	Methodic

	MVC

	nuget

	Offensive programming

	Office

	office 365

	OOP

	OpenXml

	Pdf

	PowerPoint

	Service Bus

	Service Fabric

	Soft skills

	SOLID

	Structure code

	TDD

	Terraform

	UI

	Uncategorized

	Unit tests

	Visual Studio

	Visual Studio Code

			Meta

			Log in
	Entries feed
	Comments feed
	WordPress.org

				

	

	
		
			codingsoul		
	

	Intuition and discipline, coding for my soul	

 Ignite WordPress Theme by Compete Themes.
	

	
	
	

	

